22 research outputs found

    Continuous human motion recognition with a dynamic range-Doppler trajectory method based on FMCW radar

    Get PDF
    Radar-based human motion recognition is crucial for many applications, such as surveillance, search and rescue operations, smart homes, and assisted living. Continuous human motion recognition in real-living environment is necessary for practical deployment, i.e., classification of a sequence of activities transitioning one into another, rather than individual activities. In this paper, a novel dynamic range-Doppler trajectory (DRDT) method based on the frequency-modulated continuous-wave (FMCW) radar system is proposed to recognize continuous human motions with various conditions emulating real-living environment. This method can separate continuous motions and process them as single events. First, range-Doppler frames consisting of a series of range-Doppler maps are obtained from the backscattered signals. Next, the DRDT is extracted from these frames to monitor human motions in time, range, and Doppler domains in real time. Then, a peak search method is applied to locate and separate each human motion from the DRDT map. Finally, range, Doppler, radar cross section (RCS), and dispersion features are extracted and combined in a multidomain fusion approach as inputs to a machine learning classifier. This achieves accurate and robust recognition even in various conditions of distance, view angle, direction, and individual diversity. Extensive experiments have been conducted to show its feasibility and superiority by obtaining an average accuracy of 91.9% on continuous classification

    Radar signal processing for sensing in assisted living: the challenges associated with real-time implementation of emerging algorithms

    Get PDF
    This article covers radar signal processing for sensing in the context of assisted living (AL). This is presented through three example applications: human activity recognition (HAR) for activities of daily living (ADL), respiratory disorders, and sleep stages (SSs) classification. The common challenge of classification is discussed within a framework of measurements/preprocessing, feature extraction, and classification algorithms for supervised learning. Then, the specific challenges of the three applications from a signal processing standpoint are detailed in their specific data processing and ad hoc classification strategies. Here, the focus is on recent trends in the field of activity recognition (multidomain, multimodal, and fusion), health-care applications based on vital signs (superresolution techniques), and comments related to outstanding challenges. Finally, this article explores challenges associated with the real-time implementation of signal processing/classification algorithms

    SPEEK Membrane of Ultrahigh Stability Enhanced by Functionalized Carbon Nanotubes for Vanadium Redox Flow Battery

    Get PDF
    Proton exchange membrane is the key factor of vanadium redox flow battery (VRB) as their stability largely determine the lifetime of the VRB. In this study, a SPEEK/MWCNTs-OH composite membrane with ultrahigh stability is constructed by blending sulfonated poly(ether ether ketone) (SPEEK) with multi-walled carbon nanotubes toward VRB application. The carbon nanotubes disperse homogeneously in the SPEEK matrix with the assistance of hydroxyl group. The blended membrane exhibits 94.2 and 73.0% capacity retention after 100 and 500 cycles, respectively in a VRB single cell with coulombic efficiency of over 99.4% at 60 mA cmāˆ’2 indicating outstanding capability of reducing the permeability of vanadium ions and enhancing the transport of protons. The ultrahigh stability and low cost of the composite membrane make it a competent candidate for the next generation larger-scale vanadium redox flow battery

    Scale specified single shot multibox detector

    No full text
    Detecting objects at vastly different scales is a fundamental challenge in computer vision. To solve this, some approaches (e.g. TridentNet) investigate the effect of receptive fields, whereas other approaches (e.g. SNIP, SNIPER) are based on the image pyramid strategy. In this study, a novel singleā€shot based detector, called scale specified singleā€shot multibox detector (4SD) is proposed. It aims to predict objects of a specific scale range separately by using feature maps of different sizes. First, a parallel multiā€branch architecture with feature maps of different sizes is generated by scale specific inference module. Then, the authors propose a scale specific training scheme to specialise each branch by sampling object instances of proper scales for training. Results are shown on both PASCAL VOC and COCO detection. The proposed method can achieve a mean average precision of 83.1% on PASCAL VOC 2007, and 36.9% on MSā€COCO at a speed of 28 frames per second, which is superior to most singleā€stage detectors

    Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention.

    Get PDF
    The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in human malignant ovarian tumors, and test TWEAK's potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC), we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%). Similarly, 35 out of 41 (85.37%) malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients' clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-Ī± (TNF-Ī±), whereas either TWEAK or TNF-Ī± alone didn't affect HO-8910PM cell growth. TWEAK promoted TNF-Ī± production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1) production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker

    Sparsity-based Human Activity Recognition with PointNet using a Portable FMCW Radar

    No full text
    Radar-based solutions have attracted great attention in human activity recognition (HAR) for their advantages in accuracy, robustness, and privacy protection. The conventional approaches transform radar signals into feature maps and then directly process them as visual images. While effective, these image-based methods may not be the best solutions in terms of representation efficiency to encode the relevant information for classification. This article proposes a novel HAR method combining sparse theory and PointNet network, with both operations in the time-Doppler (TD) and range-Doppler (RD) domains. First, sparsity-based feature extraction is introduced to use a limited number of sparse solutions to characterize human activities in the form of TD sparse point clouds (TDSP) or dynamic RD sparse point clouds (DRDSP). This new representation is validated by comparing the reconstructed and original signals. Then, PointNet networks are adopted to summarize multidomain features and predict human activity labels by a sparse set of input point clouds. Comprehensive experiments were conducted to demonstrate that the proposed method can yield a higher representation efficiency, classification accuracy, and better generalization capability than existing ones.Green Open Access added to TU Delft Institutional Repository ā€˜You share, we take care!ā€™ ā€“ Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Microwave Sensing, Signals & System
    corecore